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INTRODUCTION

In the study. of enumerative problems on plane conics the fol-
lowing variety has been extensively studied {[6]1,[7]1,115]},§171,([181,
(19}, £20},(23),[25])).

We consider pailrs (C,C'} where C 1s a non degenerate conic and C'its
dual and call X the closure of this correspondence in the varilety of
palrs of conics in UN and muu.

On this variety acts naturally the projective group of the plane
and one can see that X decomposes into 4 orbits: Mo open in X; XXy
of codimension 1 and X, = ma n mw of codimension 2, All orbit closures
are smooth and the intersection of m; with mm is transversal, This
theory has been extended to higher dimensional quadrics ([11,({15},[17],
[21]) and also carried out in the similar example of collineations
([(16]1).

The renewed interest in enumerative geometry {see e.g. [(11]) has
brought back some interest in this class of varletles ([22], (5] %
cf.§6).

In this paper we will study closely a general class of varleties,
including the previous examples, which have a significance for enume-
rative problems.

Let G be a semisimple adjoint group, o: G~ G an auntomorphism of

order 2 and il = &°. We construct a canonical variety X with an action

of G such that

1) X has an open orbit isomorphic to G/il

2) X ies smooth with finitely many G orbits

3) The orbit closures are all smooth

4) There is a 1-1 correspondence between the set of orblit closures
and the family of subsets of a set i, with £ elements. If J C Hp
we denote by §; the corresponding orbit closure

5) We have 5. N§5_ = Srug and codim Sy = card 1 ,

I J
* We thank the "Lessico intellettuale europec" for supplying n:mﬁﬂ:Onun»o:.
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uwv Each mH is the transversal nmavwmnu intersection of the mTpw B
u €1

7) For each §; we have a G equivariant fibration n :S; * G/P; with Py
' a paraholic subgroupwith semisimple Levi factor L, ¢ stable, and
- the fiber of L is the canonical projective varlety asscciated to L
and o |L

Using results of Blalynicki Birula [2] we give a paving of X
by affine spaces and compute its Picard group. We describe the posi-
tive line bundles on X and their cohomology in a fashion similar to
that of "Flag varleties™.

Next we give a precise algorithm which allows to compute the so
called characteristic numbers of basic conditions (in the classical
terminology) in all cases. The computation can be carried out mechanical
ly although it is very lengthy.

As an example we give the classical application dué to H,Schubert
{14] for space guadrics and compute the number of gquadrics tangent to
nine gquadrics in general position.

We should now make three final remarks. First of all our method
has been strongly influenced by the work of Semple [15], we have in
fact interpeted his construction in the language of algebraic groups.
The second point will be taken in a continuation of this work.Briefly
we should say that a general theory of group embeddings due to Luna
and vust [13] has been used by Vust to classify all projective equi-
variant embeddings of a symmetric variety of adjoint type and in par-
ticular the ones which have the property that each orbit closure 1s
smooth. We call such embeddings wonderful. It has been shown by Vust
that such embeddings are all obtained in most cases from our varlety X
by successive blow ups, followed by a suitable contraction.

This is the reason why we sometimes refer to X as the minimal
compactification, in fact it is minimal only amcng this special class.
The study of the limit provariety obtained in this way is the
clue for a general understanding of enumerative guestions on symmetric

varieties as we plan to show elsewhere.

' Finally we have restricted our analysils to characteristic 0 for
simplicity. Many of our results are valid in all characteristics (with
the possible exception of 2) and some should have a suitable characte-
ristic free analogue. Hopefully an analysis of this theory may have
same applications to representation theory also in positive characte-
ristic.
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1. PRELIMINARIES

In this section we collect a few more or less well known facts.

1.1. Let G be a semisimple simply connected algebraic group over the
complex numbers. Let o: G = G be an automorphism of order 2 and H=GY
the subgroup of G of the elements fixed under o¢. The homogeneous space
G/H is by definition a symmetric variety and more generally, if G' is
a guotient of G by a (finite) ¢ stable subgroup of the center of G,
the corresponding G'/H' will again be a symmetric variety.

Let g, h denote the Lie algebras of G, H respectively. ¢ induces
an automorphism of order 2 in g which will again be denoted by ¢ and h
is exactly the +1 eigenspace of g¢.

We recall a well known fact:

PROPOSITION. Every g-stable torus in G 1s contained in a maximal torus
of G which is ¢ stable.

I£ T is a ¢ stable torus and t its Lie algebra, we can dacompose
East =1t &¢t, according to the elgenvalues +1, -1 of o. t, 1s the
Lie algebra of the torus T, = 19 while ty is the Lie algebra of the
torus T, = {t € T|t® = ¢~1) such a torus is called anisotroplc. The
natural mapping Ho XTy*T is an isogeny, it is not necessarily an
isomorphism since the character group of T need not decompose under ¢
into the sum of the subgroups relative to the elgenvalues #1. We in-
dicate still by ¢ the induced mapping on t* and can easlly verlfy in

case T is a maximal torus and & € Mn the root system:

i) Ifte Me 9, is the root space decomposition of g then
4l . 2
olg,) = 9,0 + hence o($) = ¢,

(i1) o preserves the Killing form.

We want now to choose among all possible ¢ stable torl one for which
dim T, is maximal and ecall this dimension the rank of nﬂr. indicated
by L.



st AP YA e B A e .

ok =4

£

m..mmnOEMOmhn»on“ The subspace £, + ¥

1.2. Having fixed T and so the root system % we proceed now to fix the
.womhnh<m roots in a compatible way.

LEMMA., One can choose the set »* of poslitive roots in such a way that:
If o € ¢ and o 7 0 on &y then o €97,
.mwﬂbm..umnOEMOmm m» = MM L] M““ every root o is then written a¢ = o +a,
_hmsm a¥ =a - a,- Choose two R-linear forms eo and ed on m“ and
.ma such that eo and %, are non zero on the non zerc components of the
‘"“roots., We can replace oA by a multiple if necessary so that, if a=
.,.n @, + o, and o, # 0 we have |4 (a,)]| > [¢ (e )|. Consider now the
" R=linear form ¢ = eo ® 4y, we have that ¢(a) # 0 for every root a ;
‘moereover 1f a # 0 on ﬂa. l.e. o = oy * ooy with a4 # 0 the sign of ¢(a)
equals the sign of eAanéu. Thus, setting ot = {a € ¢|4(c)> 0} we have
the required choice of positive roots. Let us use the following nota-

tions

o, = {a € 8| alt, =0}, & =¢-0o .

Clearly b, = {a € e_aq = o} while by the previous lemma ¢ interchanges
o with & .

T Having fixed e+ as in the above lemma we denote by B C G the cor-
responding Borel subgroup and by B~ its opposite Borel subgroup.

1.3. It is now easy to describe the Lie algebra h in terms of the root

; .mmnosuowwnwoz. We have already noticed that qamnv =9 4
. “a

LEMMA, If a € eo , ¢ 1s the identity on 9y -

PROOF. let Xy 0 ¥

. rn.rm the standard mpu triple assoclated to o.
Since oY

= a we =M<m nﬁrn- = :9. on nstOnrmn hand since o,aunu L
' we have qnxnv = tx, . Now if aﬁxeu = -x_ we must have also oﬁwauu Yy
since ra = Hxa ' MQ_. Now 1f we conslder any element s € k, we have

i —xn ;s 8] = Hwn , 8] = 0 since a vanishes on &, by hypothesis, This

' Ampllies, setting t = Xty that £, + Ct is a Toral subalgebra on
which ¢ acts as -1. Since we can enlarge this to a maximal Toral sub-
algebra, we contradict the cholce of T maximizing" the dimension of Tq-

PROPOSITION. h = t_ + [

h g+ Cilx + oix_)).
-0 QmOOQ. QW#._ o [+3

' PROOF. Trivial from the previous lemma.

We may express a consequence of this, the so called Iwasawa

- + CXy is a complement to h and
a € eg

.80 it projects lsomorphically ontc the tangent space of G/H at H, in
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particular since Lie B 2 L 1 4Cx, ., BH C G is dense fn G.
’ «€e¢y °

COROLLARY. dim G/H = dim t, + 1/2]|e,].

1.4. Ifr C ¢, 1s the set of simple roots, let us denote ﬂo =T N L
Fy=r n v, explicitely:
r, = HmA.....mxu" ry, = ﬁads...~nuu.

LEMMA, For every oy € wd we have that QM is of the form |nw.|n=»umu

monmczm gw m ﬂd msmmoam:o::mmmnu<mw:nmmmﬂu nwu. zonmocmn~
4
o = o, - mzhumu.

PROOF. By Lemma 1.2 we know that ﬂm € ¢ hence we can write

QHH IAMEHWQx + Msuumuw Srmﬂm pr. zpm wumuo::mnmnwdm»:ﬂmamﬂm.ercm
4y = a0 = E Suwnm axﬂnnv + MEFXM=wumu - nzpumu. Since the simple
roots axe a basis of the root lattice we must have in particular
Mapwaxn =0 for £t ¥ 1 and uapxax» = 1. Slnce the ahu.m are non nega-
tive integers it follows that only one mgy is non zero and equal to 1

and the m.y 15 also equal to 1,

Now consider the fundamental weights. Since they form a dual
basig of the simple coroots we also divide them:

s_.....eu~ ng....~nx where:

ASH ' muy = 0, As» R Wu. =1 mw and similarly for the nu.m.

Since o preserves the Killing form we have:

o Oy o o v
Asp ' muu = ﬁe» P muv =0
i g . 4 2
§y = (wy , a)) = (0%, (-a, - En,.8.})
=g, e N S TR S
Ann.._. ] QHU TH“_. v ﬁhv “_ k
We deduce that
(g, » o}
am L LA
{a a,) ¥
i "4 !
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1s an integer.
AQH r ﬂ..ru _.

“Reversing the role of 1 and k we set that it must be 1 so

Now @’ must be in the welght lattice so

.o o _
S.w_.|Euﬂo

A

w.im can summarize this by saying that we have a permutation ¢ of order

{2 in the indices 1,2,...,} such that w} = -w . *

F(L)
-l DEFINITION, A dominant weight is special if it {s of the form In;uw,

. A special weight 1s regular if ny # 0 for all 1.
Fii) ’ L
Thus we have that a weight A is special 1ff 1% = -a,

with ny =n,

1.5.

LEMMA, Let X be a dominant weight and let V, the corresponding irre-
ducible representation of G with highest weight A. Then 1f <m mm=Onmm
n#mm:&mmmomOm <w Ommlusdwﬂww=n<mnnoummwa <w Aﬂwnmpm < #0

A 1s a special welght.

PROOF. Recall that BH € G is dense in G so that H has a dense orbit
in G/B. Also v, = H®(G/B,L) for a suitable line bundle L on G/B.
s
So if n._.mumaﬁ {0}, we have that mA is a meromoxphic
2
G/B constant on the dense H orbit, hence 54 13 a multiple of Sq and

1 ode

function on

our first claim follows.
Now assume <m # 0 and let h € <ﬂ = {0}. Fix an highest weight vector
v ] <> and let U C <» be the unigue T-stable complement to <>.0Hmmﬂuw
U ig B~ stable and BH € G is dense in G. Then assume h € U but an
the other hand B Hh spans <» a contradiction. Hence

h = av, +u , a€cC -~ {0}, u€EU
Since T, CH and h is H invarlant this implles »mao = id hence A 1is
special.

*
1.6. If A is any integral dominant welght and Vi the corresponding
o
irreducible representation of G with highest weight A, we define vy to
be the space Vi with G action twisted by o (i.e. we set gov in <m to
be ol(g)v, in <v~.
*
LEMMA. If X is a special welght then <m is isomorphic to <>.
PROOF . 4” can be characterized as the lrreducible representatlon of G

having -k as lowest weight. Now let v, € <w be a vector of weight 1},
let P be the parabollic subgroup of G fixing the line through vy P is
generated by the Borel subgroup B and the root subgroups relative to
the negative roots--a for which {(a,X }? = 0. Thus the parabolic subgrou
wn. transformed of P via o, contains the root subgroups relative to
the roots :8; and also to the roots o, a € eﬂ. Now q.eﬁu = ¢, hence
P’ contains the opposite Borel subgroup B . Clearly vy e <M is sta-

bilized by ?? hence v is a minimal weight vector and its welght is
=A. This proves the claim.

1.7. We have just seen that, if X is an integral dominant special
walight <» is igomorphic, in a co-linear way, to <”. Under this isomor-
phism the :wm:mmn welight vector vy is mapped into a lowest weight
vector in q». We normalize the mapping as follows: m: vy the line Cv,
:mm a unique T-stable complement <y we define v} € <» by: (v ~<»v = 1,
Ad .<> vuo. 4» Hmmmmhw<umm=nowomHotmNWSmHarn<mnwonhu <H.zm

thus define h: <“ *V, to be the (unique) o-linear isomorphism such
that h(v}) = v,.

REMARK . Hm vVeao vy is a G-module, the action of G on P (V) factors
ﬂsnocmr G 1f and osww 1f the centexr of G acks on each typ with the
same character., This applies in particular when V is a tensor product
of irreducible G-modules.

~
We now analyze the stabilizer in G, H; of the line generated by h.

LEMMA. 1) N equals the normalizer of H.
11) We have an exact sequence H & m =+ C, where C is the subgroup of
the center of G formed by the elements expressible as caaau_u for
some g € G.
i1i) The stabilizer of the line generated by h in G is the subgroup
fixed by the order two automorphism induced by ¢ on G.

PROOF. Assume %h = ah, o a mnmwmﬂ. Since h is ¢ linear, Jh=ghg™ ' =

= mqaalavr. Therefore galg U acts on V) as a scalar. Since V; is ir-
Hmmco»vpm this implies go(g u lies Hz the center of G. Conversely if
golg v lies w: the center of G, g € m ve claim g € ¥ (H). In fact putt
ing [ = uqﬁa - we get for each u € H

-1

1

0(g 'ug) = atg” Mualg) = ota V¢ M uzalg) = ¢ ug.

N
Now assume g € N(H). To see that ¢ € H it is sufficlent to show that
mq_muﬂ. lies in the centexr of G or equivalently ﬂrwnwmn acts trivially
on g = Lie G via the adjolnt representation. Decompode

g=h@®o md. And
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consider the subgroup K in Aut{g) generated by ad(H) and ¢. Slnce PROPOSITION. 1) If X is a speclal welght then V,, contains a non zero
adi (H) is reductive and has at most index 2 in K(N(H) 1s clearly ¢ element h' fixed under H.
stable) also K is reductive. We claim that both h and g, are K stable. 1i) h' is unique up to scalar multiples and can be normalized to be
In fact h 4s clearly K stable and the reductivity of K implles that it .
has a K-stable complement in g, but the unigue o stable complement of h* = Vai + M zy

4} i K st .

T.w iz g, s0 g, 1is also K stable with v,, a highest weight vector of V,, and the Z 's weight vectors

"\ Now notice that since g € W{H}, for each u € H 1 h
3 4 having distinct weights whose weight 1s of the form 2(X - M :mmwv‘ ny
| . - s=1

i g 'ug = analdycoanw non negative integers.

» 4 acts triviall n. on th . iii) if A is a regular special weight then we can assume that the vec-
so that go{g '} commutes z»nmﬂm and acts trivially on h. On e other tors Zyeeee0zy have weight 2 (X rmau~....~ny _—al).
hand, 4f x € g,, we have ady (x} € g,, since g, is K stable, so : - *

PROOF. If we put h' equal to the image of h under the unique G-equivari

- - -1
-adg Tix) = o(adg T(x)) = -adetg” ") (x) ant projection vV, & V, = V,,, i} 1i) follow from the expression of h as
a linear combination of welght vectors given above. To see iii) assume

-1 -1
= trivi 1 -] ' d so
and hence adgo{g ') {x) = x so gulg ') acts trivially also on g, an A (and hence 2X) is a regular special welght. Since h' is fixed under

on g. This proves 1i}. H, xh' = 0 for any x € h = LieH. In particular if we let a_ be a simple
i1i) is clear from the above. restricted roekt and a_ € I', be such that o_= Hnn - a%) £m¢=m<m {cE.
Wﬂ see iii) 5on»nm|ﬂ:wnensm subgroup fixing the line generated by h in 1.3) 5 1 s 2B ]
G'is the image in G of H. Hence if we denote by o' the automorphism
induced by ¢ on G it conslsts of the elements such that uo.—al_v = id ﬁxln +o{x__ })h' =0, x €g .
~ which are the elements fixed by o¢'. 5 s %5 g T%g
wmzwwnm. a) H has finite index in K.. o .:w
b} H is the largest subgroup of G with LieH = h. (x

|nm + anxunmvu<u» u x1nu<N»
PROOF. a) follows from part ii) of the previous lemma and b} from the
fact that H is connected (cf. [28]).

We complete v, to a basis A<y.<4~<-....<5~ of weight vectors and
consider the dual basis hqy.<g.<~‘...~<au in <m. We have ra<»~ =V
i1f Xy, is the weight of vy we have -x, mm;:muarn of <p
weight of w, = h(v'). If we identify hom(V},V,) with V, ® ¥V, ve see

that h 1s identified with the tensor

since onxnnmu € g_yo and nam € eﬂ. Also by the regularity of 2A
xunm<y is a®non zerd weight vector of weight 2 —ag . It follows that
for some 2y o(x_

the claim.

nmvaw = |x|=m<m> so that zy has welght 2(2 1Mmu provin

2 and,

and so |xM as

The analysis just performed does not exclude that vy itself may

contain a non zero H-fixed vector 7v. In this case we have seen that
1

we can normalize 3» H s» =v, + M=H~ uy lowey weight vectors. It fol-
lows that s» 2] r» must project to h in v, {by uniqueness of h}).
Now the dominant A's for which dim <> = 1 have been determined

completely [9],{24], the result is as follows: Let us indicate >4 such

m
h=v, dv,+ »wa w, 8 v,.

. o
v, 8 vy has weight 2\ while w, & v, has weight x; Xy set,
The fact that h is o-linear implies in particular that it is an H
P i P Consider the Killing form restricted to t, and thus to th, we
isomorphism. This in turn means that h is fixed under H. look =1 =1 _
cok at the restriction of ¢, to t,., 4f a € ¢, let us indicat th
Recall that v, @ v, generates in V, & V, the irreducible module V,,. 1 =1 4 e « the
by A w by 22X restriction of o to n*.
Now order a,,...,d, sSo that a_ - a_  are mutually distinct for s < £ * - A
LA s 8 - v If p € t7 let us indicate b its extensi
{and of course by 1.4 if j > &, for each i > & there is an index s < to t =1 yu extension to g by setting it 0
R 2 _ .G = _1 - =0°
such that oy ag = @y oy }. call o u.ﬂm amv s < L the restricted Then the theorem in (9] is:

simple roots. Consider the set of p € m“ such that qw
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"weights of course Asswa = 0. Thus we see immedliately that A

10

hﬁhﬁP is a positive integer for all o € ¢
! (a,a)
) N
erwswwommnonsmnusﬂwcOmmmoounmwsmm»mmxmonHww:mmmn >4 OH»

for which Qim <w = 1. One, can understand this theorem in a mofe pre-

clse way, If a € ¢$, then a is exactly Wne.uﬂqu~ and “mnmy = {o,0). Now
(]

also a weight w is of the form w 1f and only if w = Mas -w ). For such

1 is cen-
tained in the positive lattice generated by the welghts wy 1f g(1) = 1

and w; = @y 1f F(L) £ 4.
; Gli) 4

To understand exactly the nature of A we must see if

{w mu {w, = wy qmv
|u“ (resp, ——2ii)l
{a,a) (o, )

is an integer.

Since w:.msw case for such speclal welights . we have 2) € >A one knows
at least that these numbers are half integers. It follows in any case
that >a is the positive lattice generated by the previous weights or
their doubles. i.e.

1

L
A= de nguge My 20 and oy =y or

1
- . = rk A" is also
T or NAEH ewnpuuv Recall that R X
the rank of the symmetric space.

2 wy {resp. wy = wv

2. THE BASIC CONSTRUCTION

2,1. We consider now a regular special weight A and all the objects of

the previous paragraph Vyr h' € <u>b Let now P,, = F(V,,) be the pro-

jective space of lines in Vyy and h € Py be the class of h'. The
basic object_of our nalysis is the orbit G - K of B in Hw» and its
- o -

"clesure ¥ = G - h., By construction X is a G-equivarlant compactifica-

.tion of the homogeneous space G .w. furthermore the stabllizer Hof B
le a group containing the subgroup H. -
We will analyze in detail ¥ and in particular will see that H has
finite index in H. For the moment we concentrate our attention to X.
Since X is closed in By, #nd G stable it contains the unique closed or
bit of G acting ouummy. l.e. the orbit of the highest weight vector

v, @ v,. Now the feollowing general lemma is of trivial verification:

LEMMA: If X 1s a G varlety with a unique closed orbit Y and V 1s an

A T M T
1"

open set in X with ¥ NV # ¢ then X = U gv,
9€G

The use of this lemma for us is in the fact that it allows us to
study the singularities of X locally in V.

2.2. Let A be a regular special weight. Consider a G module

vy, o Mcc with y, = 23 -]n;24, some n, > 0. Let h € Vbean#
invariant tpnw component h' in <u>.coooam0mm<wrn Cvyy @ Vo, inar
stable way and consider the open affine set A = v A & Qu» a Mdu CP{wW).
Notice that h € A and A is B~ stable. *

1 orbit Hgs is isomorphic to % dimen-

. The natural morphism !+ rlh o a* has coorai-

2

LEMMA: The closure in A of the T

slonal affine space at

-2, ummu -2,
=mnmm [ £ .t P 3 ).T h is identified with the open set

of A" where all coordlinates are non zero.

PROOF: By prop. 1.7 we can write h = Voy * Mnm with uh weight vectors
i

of welghts x; = 2\ - Mahpumm. {some m; > 0) and zi,...,z; of weights

- ]

2) - mma.....m» - unn. Let us apply an element t € T' to h we get
X
th = n~><m» + Jt Hnm which, in affine coordinates, is
xwlu»
vy, + 1t z{.

From the previous formula Xy - 2\ = w ahuunlmmug. this means that

the coordinates of th are monomials in the first & coordinates.

This means that Hd maps to a closed subvariety of A, isomorphic

Iy |u94 |~Qn
to affine space A", via the coordinates (e ). Since the
restricted simple roots are linearly independent the orbit Hdr is the
open dense gubset of bp

dinates.

Y-

consisting of the elements with non zero coor-

REMARK. The mmmwhwwumn of h in 7' is the finite subyroup of the element:
t €11 with ¢“%4

= 1.

u.u.rmncmaovmnrnommm~».nosmpmmnnzmovm:wMMHummmn
A= vy, oaeﬁ S, and set V.= 2N X. Remark that Vv is B™ stable, it
contains h and so also A", the closure of TL in A, hence Vaa € V and
therefore V has a non empty intersectlion with the unigue closed orbit
or G in MN».

Let U be the unipotent group generated by the root subgroups xu,
a € oﬂ. Since U acts on V we have a well defined map J& uxaloy by
the formula ¢(u,x) = u-x, '




PROPOSITION: ¢ :

12

U x ﬁn =+ V is an isomorphism.

.mmmoom. We first will construct a map ¢: V = U such that ¢¢(u,x) = u,

' and prove that Im ¢ is dense in V. From this the claim follows; in fact

““hence ¢ maps V in A
‘we have ¢'+ ¢ =

consider the map §{: V =+ V given by L(v) = eﬂ<.|g<~ clearly [¢(u,x) = x

L and setting ¢': V =+ U x at by ¢'(v) = (§(v).clv))
_Cx’w. Eince ¢{U x bhv 1s dense in V and ¢+$' is the
identity we also have ¢-¢' = d<.

2.4. From now on we make the necessary steps for the construction of P.
S Since 2A is special we have, by our considerations of 1.6, that

<~> is isomorphic to <m» in a g-linear way. This isomorphism defines a

" non degenerate bilinear form {,} on Vaa which is symmetric and satisfies

the following properties:

i

2 {gu,v’ Ac~oam|du<v fox each g € G, u,v € ¢uy

{xu,v} = -(u,0(x)v) for each x € g uv Ev,,

Remark that the tangent space t in Yaa to the orbit c.<~y has as basis
the elements X Voyt O € 9% {since the opposite unipotent group of U is
the unipotent radical of the parabolic subgroup P stabilizing the line
through <N»H. Let 1 be the subspace generated by T and Vay®

® is non degenerate.

LEMMA: i) The form {,) restricted to 1
11) 1% is stable under P.
i1ii) The orthogonal aOr (relative to the given form) is stable under

g{P).
PROOF: 1) Filrst of all remark that if TAL) E <u> are weight vectors of

. weights XqsXy respectively and Adﬂ.<~v # 0 we have, for t € T,

—yd
nxd4<_~<~v = 4ﬂ<d.<nv = ﬁ<a~oﬁnlgv<~v =% xuh<d~<~v and so Xy = |xw.
This implies that Yo is orthogonal to QM» and A<~>.¢m>v # 0.

It remains to verify that on T the form iz non degenerate. Using our
previous remark Axln<u>.x:m¢~»v = 0 unless B = -4, In this case
Axlmo<m».=im<m»v = lnﬁdnw.xmxlm<~»v {e ¥ 0) and A<~>.xmx|m<~>v =

= A<m>.nxm~xlmu<~>v whﬁnm Xy, = 0 this »m+ﬁuw.mv A<~>.<~»v # 0.
Since the map a =+ -o” 1s an involution of ea the first claim follows.
i1) It is sufficient to show that t° is stable under the action of the
Lie algebra of P. Since 1° is stable under the torus T it is enough to
show the stabllity of 12 with respect to the elements Xy with

a € LN v eﬂ. = _xn~x4m_<my + x if o € oo v aﬂ we
have X,Vay ™ 0.

111) This is clear from the properties of the form.

Now x x_ v

a*-pV22 -g%aV2a’

PROOF.

] [T e ——— D Y <hcaly

2.5.

ieMMa. At c voy * ok,

PROOF. We must show, that, if h' = Vo * I 2;, each 2z, € AOP. The weight
of Nm is Xy = 21 - Mshpvmmu 80 the only mmmo to verify is when

|M=% ~umu = -B for some B € 9%. Suppose this happens for n»o. since h'

is H stable we have hxm + nﬁxmvus. = 0; but Axm + qaxw-vr. = anpo+
terms of welght different from 22, thus xmuwo = 0. py the same weight
considerations the only possible non zero scalar product between zy
and the elements of the basis of 1° is the one with xln<u>~ for n:um

-m<~»nupu = lvgpeotx_ gz ) =

we have {x 0, Anaxxmu = cx, some c).
2.6. Now we consider the projection n of <~>o=no <n»\aor. gince

U Cg(P) we have a U action on <u»\._.o__.
Let K =

stable.

and the projection is eguivarian!

=n<m» + Qm»v. K is an affine hyperplane in <~>\aoh and it is U

LEMMA. The map j: U - K defined by j(u) = =_:<~>v is a U eguivariant
isomorphism.

PROOF. From 2.4 we know that t is the tangent space of Uwv
This implies that j is smooth at 1.
everywhere smooth.

2 in <m>.
Since j is U equivariant it is

Now U has no finite subgroups and dimU=dimK so j

is an open immersion. It is a well known fact that an open immersion j

of affine space A" into another affine space A" of the same dimension
is necessarily an isomeorphism, we recall the proof: It the complement
of uabuv i1s non emty it is a divisor which has an equation £, this is
a unit a A" ana hence a constant, glving a contradiction.

We can now construct ¢ as required in 2.3, setting {(v)} = unga=aquu for
any v € V, the fact that Pé{u,x) =

n and j and lemma 2.5.

u follows from the U equivariance of

2.7.
LEMMA. The image of ¢ is dense in V.

PROOF. The tangent space to bn in V4, 18 orthogonal to 1 (cf, 2.5),
This implies that the differential of ¢ in the point {1,0) is injective
and 80 dim(Img) = aim(U xA*); now dimv = Aimk < atme/H = aim( xa).
Since V is irreducible we get that v = mmﬂ.

PROPOSITION. The stabllizer of & is M.

We have shown in the previous lemma that dimX =" dim G/H hence
the subgroup H has finite index in the stabllizer of mﬂ Frxom 1.7 the
propesition follows.



. 2.8. Using proposition 2.3 we identify V with the affine space U x at. orbit 1f and only if they lie in the same set of hyperplanas MH. Now
£ is the ; we claim that the hypersurfaces mu are just the closure of the M» in w.
In fact, let mh be any irreducible component of 8 -G .w. necessarily 8;
i s i 1s G stable, since G is connected. Hence, 5, 2 Y (the -
" PROOF. We go back to h € hom(V_,V.) ~ V. & V, (ecf. 1.7) and proceed as ! (e N { unique closed or
Vg i ATTAT =T A . bit} and mH N ¥ is thus a component of V-G * h. Hence, S, NV = M (up
in 2.1, 2.2, Let h" be the class of h in Pthom{Vv,,Vv. )} =P(V., & V.} and i i-
S AT A X A to reordering the indeces). Hence, 8§, = M and conversely by the same
X" = Grh". Setting V, a V, = V¥ & %, the decomposition in G submodules, = i i ~
! A X w» argument, MH is an irreducible component of X - G - h, hence, it is
we consider the affine space Af = v, + em ® % and the G equivariant G-stable

. projection p: P(V, @ V,) 2 P(V,,) from P (2}, p is defined in the open
proj [ A a 2% ' P To finish it is only necessary to remark that, since any point is

.5 4
~wset BP(V, @ V -P(z hence in particular in v' = X" N A", . :
e (vy Al (z), P G-conjugate to a point in V, the statement that two points in X are in

i N 1,4
From the analysls of 2,2 the closure in A" of the orbit T'h roj-
Y t P the same orbit if and only if they are contained in the same S 's fol-

" 2

sect | isomorphically ontoc A" hence the lsomorphism ¢: UxA™ =+ V i

., i ects under p MO X! nw www gl B p + P lows from the similar statement relative to U x T, in V.
factors through ¢: UxA™ —* V' —+ Vv, We know that dimV"' = dimX" =
= mwaa\w (cf. 1.7} so Haem is dense in <~ and as in 2.3 this implies
that em 1s an isomorphism. We now have that the union of the translates

of <—

"yt PROPOSITION. The intersection between the orbit Gh and U x A
- Lopen set where the last £ coordinates are non zero.

1

3.2. Summarizing, we have found & hypersuxfaces mp which are smooth.

' o The orbits are just
undexr G 1s an open dense subset in X" isomorphic, under p, to X:

since X is complete this open set must be xg. We can now prove the
X pen ¥ s M 0y 3. =8 n...n 5 - v 5, N...Nng nsg
proposition working with V', X" and Gh'. The polnts in U x A~ where [ R 1 X wwa.....px HA Hx 1
the last i coordinates are non zero are in the B orbit of =¢ hence in =
e ' and 0y 1, =8 N ,.. N5, 1is smooth.
Gh", we show now that the remalning points cannot be in Gh*. In oxder L R 1 »w

These are the only irreducible, closed G-stable subsets of X. Their in-
clusion relations are, therefore, opposite to those of the faces of the
mhsvwow on the indeces 1,2,...,R, The statement iv) is then clear.

*
to do this we interpret such polnts as maps from <» to 4» and show that

an element of bp with a zero coordinate is not of maximal rank, this is

elear fiwom the analysis of 1.7. Since every point in <- is in the U orbit

of a point in bp the proposition follows.
3.3. We have just seen that, glven a regular speclal weight A we can

= T
describe the structure of the variety A =6hCP(v,,). Assume now that

3. THE MINIMAL COMPACTIFICATION <» hnmmwm nmmmmwsm a non zero H-invarlant line genexated by h' and con-
mu.mmﬂm_nn.:. nUE»..

‘3.1, We can now completely describe the structure of the variety w.
~

PROPOSITION. There is a natural G-isomorphism y: X' - X.

THEQREM.
1) M 18 smooth. PROOF. Let us consider the map ¢: <» ind <~> which is the composition of
11} ¥ - 6 - K is a union of £ smooth hypersurfaces 5§, which cross the map £: v, » v, & Vv, defined by £{v) = v @ v and of the G-equivari-

ant projection w: €> a <» - ﬁu». Clearly ¢ is G-equivariant and we can
normalize h' so that ¢(h') = h. If we identify Vv, (resp, V,,) with
:onn\w.ryy (resp. =oan\w.b~»y (where r: is the pw:m v::&po~wmwwnh<m to
the dominant weight uj, we see that ¢ is the map taking a section into
its square. Since G/H is ixreducible, we then have that ¢ induces an
embedding mu H.<>v 1.H~<M>U which 1s G-eguivariant (and an isomorphism
of P(V,) onto its image), Clearly X is contained in the image of § and

is the image of w.. Thus ¢ induces the required isomorphism ¢.

r

transversely.
iii) The G orbits of ¥ correspond to the subsets of the indeces

1,2,...,% 50 that the orbit closures are the Intersections
MﬁADMPND-.DMH. 3

.l iv) The unigque closed OHWHRM Yo n\u is N s,.
[-tn i=1

;. PROOF. We have seen that the complement of G - R MV inV ts the union

Tof 4 hypersurfaces which are in fact coordinate hyperplanes, since
PV M Ux A and the 2 hypersurfaces Mp are given by the equations x; = 0
" for the last & coordinates, Furthermore, the description of the torus

action of Ha on ba shows that, two points in V are in the same U x Ty
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3.4. We should remark that in the special case of a group G, considered
as symmetric variety over G x G, one can more simply describe the con-
struction ad follows. If A is a regular dominant weight of G and vy the

corrasponding lrreducible representation, we consider End Acyu =
V, @ V} as G x G module. G is then thought as the orbit of the identity

1 € End (V,} and the compactification X = G - 1 can thus be thought as
"degenerate" projective transformation of the flag varlety. We will
refer to this case as the "compactification of G".

4, INDEPENDENCE ON X

4.1. A priori the construction performed in §2 depends on the regular
welght X, we want to show now a different construction of X which shows

u
its independence on ). Consider again the permutation ¢ considered in

1.3, Each orbit of ¢ consists of either one or two indices. Indexing

the orbit by the indeces {1,...,L}, for each such index j we let A be
the sum of the fundamental weights (one or two} in the corresponding
orbit. Thus a special weight is just a positive integral combination
Ms..xu while a regular one has the condition =u # 0 for all j.
J *
For each j we have <>u v <»u and a corresponding mpmam=n~J m<m>u.
Consider then mu €®(Vy,.) and h' = (h;,...,n,) € fﬂcu:T We claim

i

nrmnwkm»mo;ouvswnﬂon.m,mz HA<m»uu. H:mmow.
an .
A= Msuwyuﬂzﬂ av, J= Q. Clearly Q = <> ? Q' with Q' a sum of represen

consider

i*

tations with lower highest weights. The element

fin &n . @n .
o:.u“efutaﬁu
I I T
and in particular it maps vy in ¢» and by the uniqueness of h it coin-

cides with h on V,+« Now we have clearly a mapping
[T

TRV, ) P8 493, sending h' to @ h, J and 80 G + h' is identical
23y 22 n, J an. o,
to the closure of the orbit of @ :u 3. Let X' hbe G+ @& ru 3 mUAM <~yu~.

We wish to project m. to X proving that they are isomorphic. In fact,

we prove a more general statement which will be used later, Let us give

a regular special weight X and a representation W, with a line nrs _

fixed under H, such that 1its T, weights are all of the form A |M=wmah.
Suppose => € <> is an H-ipvariant non zexo vector and set

h=h +h, €V, W and §* = ¢k S®(V, @ W). If we project B(V, & W)

to HQ;V from IP (W) we have

17

LEMMA. The projection is defined on M. and establishes an isomorphism

between w. and m = mw».

PROOF. We can assume W = g Vyr each ¢h lrreducible and containing a H
fixed line nrn so that the prcjection :Hu W - V; with kernel @ <p has
the property =pﬁrsv = rp. bt

By reasoning as in 3.3 we can double all weights and assume
A = 2X' and vy has welght w:». In this situation we can define in M.
the affine set V' as in 2.2 and earry out the same analysis verbatim
due to nrmomnﬂsnnnﬂm of the weights of ::. Then we see that under the

glven map m. = U y9 4, w. projects isomorphically onto w. Since M is

9&6 e o -
complete, it follows that X' is also complete and hence X' = X' as de-
sired.

5. THE STABLE SUBVARIETIES

5.1. We have seen that in m the only G stable subvarieties are of the
form zwa.....Hw = mn_ n mﬁn no...n mpw for a subset of the indices
1:2,...,%. We wish now to describe geometrically such a subvariety. Let
us then consider the weights yu‘ J=1,2,...,2 defined in 4.1 and the
two weights A= »Ha + ypu + ...+ »Hx and >~ n»ua + ... o+ »»w:x
where ud.....untw are the complement of na~h-....»x in 4,2,...,¢.

We can, as before, consider X ma&mwmmm in Hﬁcuwav xH~<w>~v c

HA<~» 9 V,,.} and we can project X nohwn<m> ). Let us eall I, this
UHOummnpos Smnow is clearly G equivariant mzm maps onto the closure of
nrmouE.nwgnn.mN».

1 -
LEMMA . =dntpu va equals the unigue closed orbit in xé (i.e. /P,
PR

vd the parabolic, stabilizing the line through a highest weight vector
in <u>49.

PROOF: We may analyze the projection locally in V and in fact, since
V=0-na" it is enough to stuay natn Wi, 40 = Ty af 10
We know that the intersection a® N Wy Hr.wm that part >H“nnuuhpx
of bn where the coordinates Xy Anonn0mmmmmm:m to nluahu vanish, for

1= Md.»u.....wx. The weights of the representation <~>A. different
from the highest weight, are of all of the foxm ¢ = 22, - M:Hn» - Mwm»
vhere at least one of the coordinates n, relative to the indices i, for
which (@;,2;) # 0, is non negative, 4

If we consider the Projection of the subspace At - R, = eﬂrn».
thie can be analyzed as follows, We have the orbit Ty - ﬂm»‘ and its
closure wh and x; maps to wh. H:QOOH&pumnmmSmwsotwrwwnrm H_SQumsnu
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appearxing in vN»ﬂ are of type u»r - Mﬂpwep and then the corresponding
n

mapping expresses such coordinates as II xnm

n, > 0 for cone the indices 4 = »a\»-....pr. Thus we deduce that

=4H>p n thm~....wxy is just the point Va1

ma,

but we know that some

B< .H:Hmwno<mmnwmpma
1y =

5.2. We have thus established a G eguivariant mapping

=d" W +G " v

& v
Hd~....ux 2)

2,

1 1

This last variety is of the form n\whd~....nr for the parabolic fixing

<mw4 a <N»A.
Since the map is G equivariant, it is a fibration. We want to study a
typlecal fiber. Let us study =M._A<~:|B <~?_w = w._. .

Since =a is a smooth morphism X, 1s 'smooth and is the closure of

the fiber of =A restricted to the open orbit in zhar...»wu thils is ir-
reduclible since P is connected, We start to study ma locally always in

X, if
. is in the fiber X,

and only if y - <~w; a <Nya = <~»ﬂ [ <~>u. i.e. if and only if

the open set V. A point (y,a) in cwx Ay

Yy € wha.....p . Now U N mhd.....»x is exactly the unipotent subgroup
generate by mwu root subgroup of the roots |9w.£=mhm oy € wd and
also oy is a root of the Levi subgroup of w»_.....wx. The semisimple

part of the Levl subgroun of P is relative to the root system

L VPR ™
generated by the roots mu and nnm rootks Qx.m for which an.yAv = 0,
Clearly such a subgroup vha~...,px is ¢ stable. Moreover, if we con-

gider a CP(V }, we can analyze it as follows:
Lyreaasd, = 2hq

k
rm»u = V), 8 Vaa, * 1z} where z; has T, weight 2, - Msuwﬂu. We can
split rw» as :u»n = :m» + a' where a' is the sum of all terms of
weight myw - Mauneu :Hnrnau # 0 for some j € Api.hus....wxu. Consider
any element t € ag such that t commutes with the Levi subgroup

. Consider :»Aﬁ....h = vha~....h# N H, we have if

reeesdy
-1, - = . .
g m :na.....hw. t gt g m:M 80 t wm»N g t h

. Hence,
22,
. oat = A . -
:m»u +t a g :u»n + g t a
- - 1
We deduce that vm» =g :m»u sO rm»u is zui.....wx invariant.

Morxeover, we see nmmn >wd....~hx can be considered as the closuxe of
)
the action of the Torus .a;-» 3, on hi,
Thus, we deduce that n:mdmpvnw we mnmuun:ﬂ»:@ is in fact the

closure of the orxbit of the semisimple part of the Levi subgroup acting
on WW» + Slnce it is easily verified that (T3 i is a maximal
2

1°°* 7k
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anisotropic in r»ﬂ...pw and A, restricted to T N b»d...uw 1s a regular
speclal weight we can dpply the general remarks and lemma 5.1, and see
that nd is isomorphic to the minimal compactification of the correspond
ing symmetric algebraic variety rpa...»W\mwd...ux.

Thus we have proved:
THOREM. Let Haa~....»xu be a subset of the indices {1,2,...,%) and let
19...4y be
the parabolie subgroup assoclated to the welght >a = »h_ +>u~ +... +»Hx.
then there is a G-equivariant fibration =4“ mhd.....pw
with fibres isomorphic to the minimal compactification of
gy /Ry

We should remark that in the ase of the "compactification of a
group m=~ the set {1,...,%) can also be thought as the set of simple
To0ots of G, for each subset the parabolic of GxG is P xpP and the
fiber of the G x G equivariant fibration is the "compactification of the
adjoint group associated to the Levi factor of P".

mwd....~»# be the corresponding stable subvariety of w. Let P

5.3.

DEFINITION. w will be called simple if g = Lie G contains no proper g-
stable ideal.

It i3 clear that in this case either ¢ is simple or we are in the case
of a "compactification of a simple group”.It also clear that in genarxal

X is the direct product of simple compactifications.

6. THE VARIETY OF LIE SUBALGEBRAS

6.1. We wish to compare our method with the one developed by Demazure
in [5]) and show that, in fact, his construction fails under our analy
sis.

The method is the following: consider the Lie algebras g and h of
G H respectively. Say dim g9=mn, dim h = m, Take for every g € G the
subgroup n:mlé and its Lie algebra ad{g)h. The stabilizer in ¢ of the
subalgebra h under the adjoint action is exactly the subgroup i con=
sidered in 2.1, so we can identify n\w with the orbit of h in the Gras
smann variety na.: of m-dimensional subspaces in the n-dimensional
space 4.

¥ - J—
We define a noammnﬂ»nwnwn»ou X of o/l by putting X = Gh € S e
- ¥
We want to show that X coincides with our M. If we.use the
PlUcker embedding, we gee that we can identify X with nﬂr eleosure of
oy a G

m
the G-orbit om.wvm point (A h) in ®P(A g). If h is a vector spanning
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m
the line & h, h 1s H invariant and we want to study its weight struc-

"ture.
From Proposition 1.3 we know that
*
h=t, & g . ® . C(x_ +0(x )}
- =0 n%wc ¢ nmtﬁ o o
80 if
+ _ L+
Am._s.o.-wﬂu = 00- ﬁﬂ._-...sﬂﬂu = G._
We have
A A { N
Ah=At Ax, A...Ax, Ax Ao.. Ax Alx  +o(x
-~ =0 " 78y By =By ~B, o, oy

Ao AMx, +aix )).
g % Gy .

If we develop h and write it as a sum of weight vectors, we see

that this sum contains a unigque vector of weight p nnp+n~+..+nn i.e.

£
\ e PR ¢ P i t h
bnm>xww> >xmn>x|mw> Ax mﬂ>xnw> >xﬂﬂ and the others have

Hﬂ weitht of the form p - NMEun nu € ﬁd and Eu non negative integexs,

U.-
LEMMA. ¥ is a regular special weight,

PROOF. The fact that p is special follows since TR ~l. To see that p
s regular recall that 2p = mg + ... +mu.+n +...+a, and (2p,8.) = 2

” 1 £ 3
while {B;,&,) < 0 for each ay €I, and 8, € #g. Hence, clearly
n:-wuy Wumonmwas nu m wﬂ.

b] 3

We are now ready to deduce:
& — -
X

PROPOSITION. The compactification X =G + o C Gy, 18 isomorphic to X
[

of 2,1, ~

PROOF. Let W C A g be the minimum G~stable submodule containing
Ch = ﬂ h. Clearly for every irreducible component vy € W and G-eguivari
ant projection By W= V, we have =PA:~ # 0.

In particular it follows from 1.5 that <H has as its highest welght
a special weight < y. Also, u is a highest weight.for W, we can now ap

ply 4.1 and conclude the proof.

6.2. We can now easily see that the boundary points of ¥ are the Lie
subalgebras {(of groups related to the ones discussed in 6.2} as in
Demazure's analysis.

In fact, to pass to the limit, up to conjugation, it is enough to
do it under the action of Ty If ¢t € T,+ we have:

21
m k
t(A h) = 4 mo A xmg A eeases A xnmn
|~na . |~9¢
Alx + t olx_ ) A ... A Axn + t onxn 1)
%4 “ &4 t t
1mnh |~=P
Going to the limit t + 0 if i = »d.....»x and t =+ 1 other

wise, we obtain the subalgebra spanned by

E

Lgr Kw._..-._.xw -Nlm._-...sXImH-XQ FeeseX +QAKQ }

Kk oy 3 .
where k runs over all the indices for which o is a root of the unipo-

r

tent radical CHQ....~px of the parabolic upd~...~px and j runs over the
remaining indeces.
This is the Lie algebra of the following subgroup. Consider the

automoxphism ¢ induced on mwaﬁ....HW\cHa.....Hr. Consider the fixed
points of o in wwu...»wxcwa...»w and the subgroup of MPA.....HW mapping
onto this group of fixed points.

The Lie algebra is the one required by the previous analysis.

Remark that the projection from a G-orbit in w to the correspond-
ing variety of parabolics is the cne obtained by assoclating to a Lie
algebra the normalizer of its unipotent radical.

7. COHOMOLOGY AND PICARD GROUP

7.1. We want now to describe a cellular decomposition of X which can be
constructed, using the theory of Bialynicki-Birula {2],126). One of his
main theorems is the following:

THEOREM. If w is a smooth projective varlety with an action of a Torus
T and if m has only a finite number of fixed points Hxa,....xsu underx

T, one can construct a decomposition w = U oxH where each na..F is an af

fine cell (an affine space) centered in X

The decomposition depends on certain choices. In vmunwn=HMH~ fora
sultable choice of a one parameter gxoup p: G ~ T such that XM= wa.

Given such a choice, one decomposes the tangent space wa of w at xg as
Hx» = Hﬂh ) EMP {where T* ana T~ are generated by vectors of positive
respectively negative weight). Then Cyx, 1% an affine space of (complex)

dimension dim eMH. L

Furthermore, in [26), be shows that the variety m is obtained by
a sequence of attachments of the nx»
has, as basis, the fundamental classes of the closures pf the nx».m {in
particular it 1s concentrated in even dimensions and s% no torsion).

‘s and so the integral homology
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7.2, In order to apply 7.1 we need the following proposition due to D.
' Luna,

PROPOSITION. Let G be a reductive algebraic group acting on a variety
with finitely many orbits. If T is a maximal Torus of G, the set of
fixed points xT is finite.

"' PROOF., We can clearly reduce to the case in which X is itself an orbit.

H. ¥x is an 1isolated

.”ﬂﬂ this case it is encugh to show that, 1f x € X
hn%xmm point. We have X = Gx by assumption and T € sty
space of X in 'x can be ldentified in a T equivariant way with

me G/Lie §t, which 1s a quotient of Lie G/Lie T over which T acts

without any invariant subspaces, proving the claim.

The tangent

In particular we can apply this proposition to our variety w in
view of 3.1,
We should remark that in the case of a group G congidered as G x G
space, there are no fixed points on any non closed orbits. So the
fixed points all lie in the closed orbit lsomorphic to G/B = G/B and
they are thus indexed by pairs of elements of the Weyl group.

7.3. Notice nvmn. since X X has a paving U< affine spaces, we have
Pic nxg v = (X). We want now to compute r? nx. by computing the number
of 2 dimensional cells given by 7.1.

For this we fix a Borel subgroup and the positive roots as in § 1,
Since the center of G acts trivially on m. we can use the action of a
maximal Torus T of the adjolnt group. Hence, the simple roots are a
basis of t*. We can constrxuct a generic 1-parameter subgroup u: G, T

which has the same fixed points on X as T and in the following way:

We order lexicographically the simple roots as

m; > wu L mx e . e, >a > .. > oa

where mp = WAQM - nMv i =1,...,% are the restricted simple roots.

N We can, since in our computations there are only finitely many
welghts involved (the set A of welghts appearing in the tangent spaces
of the fixed points), select p in such a way that™{ A,p?>0,% € A 1f and
only if A > 0 in the lexicographic ordering. If x € X 1s a fixed point
of T, we analyze the tangent space T, 3% follows: x is in an
orbit 0 which fibers fl: 0 ~ G/P with fiber a symmetric variety L/L°
can assume x € W\wo and decompose Ty in T stable subspaces Ty 8T, 0T,
such that T 1s lsomorphic to the tangent space of N(x) in G/e, Ty is
isomorphic to the tangent space of x in L/L% and T4 is isomorphic to

the normal space of 0 in M at the point x. To compute dim <t one needs

-
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to compute dim 4H for each 1. Now dim 4% is given by the theory of

Bruhat cells , we claim:
LEMMA, 2 dim aw T dim T,.

PROOF. The T-structure of T, is lsomorphic to the structure of the tan
gent space at the ldentity of V\bn under the conjugate Torus
T = % 'Tx. Such tangent space is lsomoxrphic to m\mq with ¢ = Lie I,

mo = Lie LY. Since ¥ C L%, we see that in the root space decomposition
of £ under T we have Lie T c ma. mo is a sum of root subspaces, and if
L < 1%, also L, C 2%, Thus, £/%° is a sum of root spaces

13 © £_g. And then, 1f £, € (£/£%)*, we have %_p € 12/2°)7 and the lem

ma 1s proved.

7.4. For the computation of the T weights in eu we have a simple analy
8ls in the case in which the fixed point x lies in the closed orbit
G/P.

In this case x = w X W in the Weyl group and we have:

LEMMA. Hs_zxo the dimension of a% equals the number of restricted

simple roots mp such that tmp > 0,
PROOF. Using the notations of §.2, x EVvayux rp and is ldentified
with the point (1,0}, (1 € v, 0 € » v o\w NV =1U=x0, so the normal
space at X, is isomorphic to the space ?n with the induced T-action.
Thus” nrm normal space to a point L is isomorphic to bn with the
action twisted by tld. Since the T tmuarﬂm on ba are the nunw we have
that the T weights in the normal space at sx are the elements lusnw.
hence the claim.

7.5, In the computation of :uaxa we need to compute the polnts x such

that dim 4“ = 1. Thus, we need in particular to analyze:

LEMMA. If G/H iz a symmetric variety of dimension 2, with a fixed point
undexr a Torus T', then Lie G = 48(2)}, Lie H = $40(2) = Lie T',
normal facters on which the automorphism ¢ acts trivially).

(up to

PROOF: Let us recall the consequence of the Iwasawa decomposition 1.3.

1@
¥
1>
@
o

-4+ n%Wﬁ nxn.nqrcu.unapgmd+_o”“.
Since we generally have |Q # 0 1f G/H # 1 and also _o | # 0 since ¢ 1is

semisimple, we must have 1 = dim t ta = _o _ Moreover, since we want to

factor cut all normal subgroups of G on trpar g acts t 1ally, we have
G simple. We twn: to show that ea is empty. In fact, if thexe iz a

simple root B € ¢, 8ince G is simple we may assume that B +a is also
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a root. But then either B or f+a € e” and we have a contradiction.

Then we see that G is of rank 1 and the remaining statements easily fol
low.

]

7.6. We are now ready for the computation of Pic {(X).

24+

THEOREM. Pic (X} »~ 2 where r is the number of simple roots oy

i=1,...,% such that: there exist two distinct simple roots o, B with

G, = 3la - % = 208 - 89) and either —a® # B or, Af ~a® = 8, (a,6) £0.

PROOF. Let mw = Wanh - QMV~ 1=1,...,% be the simple restricted roots
(cf. 2.2). Suppose x € ¥ is a fixed polnt with dim AH = 1, first of all

we analyze the case in which x € G/P, the unique c¢losed orbit. In this

case 1, = Ty + T3 and we must have either dim AH uo.mwa aw nAon

dim aM = 1, dim 4% = 0. Now x is a center of a Bruhat cell in G/P of

ﬂ so 1t ig either the point x, corresponding

noa:moanPOHmuoHun 5,¥o with ¢ a simple root in oﬂ. Thus, by Lem
+

qu.pmua T4 at WX is the number of i such that smh is negative., In

particular we see that we can get 2 dimensional cells only centered at

the points S54%, and we need to count how many o € eﬁ are such that

mnmw > 0 for all i's. Now if o # ay, |9M~ we have mﬂhm»v > 0 {since
mnamy > 0 if B is positive a # B). Now given a € eM if a = ags we have

mnamuu >0 if j # 1. As for mﬂampuwn depends on -a

dimension egqual to dim t

g
We have various cases:
1) -af =,
11.) |nM =0, +8, B0 apositive combination of roots in LI

ii1.) -nm =ay + B, 3L

In case i.) maﬁmw = - < om 2(a.8)
In case ii.) s {c) = ~a + 5(B - Aq.ru Qy.v 0,

In case ili.) the same reasoning as in ii.) holds if g # 0,
mnAn + Ru + B) =8B + au + ma > 0 (scme m).

If B = 0, we have

2(a,0,)
- - o
mnnn + qu = ~a + nu o)
Now since nu = |Qq. we must have (a,a} = Apu~ﬂuv. Hence, the
.UM:an diagram formed by «a, Qu 1s either disconnected and aa.nuv = 0 or
2{a,o.)
is bm and then lANhN%I = -1 s0 mnﬂa + auv = nu > 0, If Ansauy = 0, we
have mnan + ﬂu~ = un + au < 0 since a = oy 1<% and j> %,
How we have to consider the case a = |GM 7 ay . since a 1s a simple
root this occurs only in the case lnM - ﬂu. j > L. The same analysis as

before shows that
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1f An.npv = |W we have mnnn + nu~ =a >0
if An.nhg = 0 mﬂnn + nwu o -a> Q.

It remains to analyze the case of x lying in a non closed orbit 0. BY
Lemmas 7.3 and 7.5 this can occur only when 0 fibers on a variety G/P°'
with fiber the minimal compactification of a symmetric variety isomorphic
to mhauu\meanv. This is the variety of distinct unordered pairs of
points in Ha 2 considered
as the symmetric square of P . In this case we only have 2 SL{2) orbits
Hﬂ.Hu and so only 2 G orbits in 0,

Thus by 3.1 we have dim 0 = dim G/P + 1 and m.ﬁdlmpvhmnhos G/P =+ G/P',
Thus, we can identify P' with the parabolic group generated by P and
relative to a simple root a € Oﬁ and we have aq = -q,

L: I

2 3
Since T acts on T, by a negative and a positive Wweight as we have noted

and its minimal compactification 1s the space P
1

the subgroup Nnn

and a = oy for some 1 21 <2 As in Lemma 7.3 write Te = T4 91

above in order to have that the set of T welghts appearing on T, con-
tains only a positive weight, we must have that the T weights in T
and T consist of negative weights. This implies that p{x) € G/P' is
the unigque B fix point in G/P', otherwise at least one of the welghts
appearing in T4 would be positive. Furthermore, notice that the fact
that p(x) is the unique B fix point in G/P' determines x uniquely since
in vla.vﬁxuu = HN there are exactly three T Fix points of which two are
*,, and mn.xov both belonging to the closed orbit. But For such X we
have that the set of weights appearing on Ty is

oy = a) + s (a, - a¥)
{ ] ] 3 a3 37} for 1 23 2% 3 # L which are all negative.
This 1s easily seen as follows: first of all the normal bundle to 0§ in
X is just the sum of the restrictions of the normal line bundles to the
closures of the codimension one orbits § 1< dee, 341, containing
J. Thus we have to compute the weight of T for each such line bundle

Zu. rmncmhhxd <3j =<4, j#£1, then the T welght of zu in X, is just

|~nu.|nwv. zoimpm tmpmﬂ eﬂ namm:onmxonn.smwmamﬁrmn T, acts
trivially on ®“ hence the HQ weight in x and x, are the same. Thus the
given formula is correct for Ty+ It remains to verify the formula on a
"complement of an in T. Thig amounts to perform the computation in the
gﬁgwggmamgﬁu§:sgzgoﬂﬂ&oﬁmﬁng

So it follows that the action of T on Ty has exactly one negative weight
and the cell assoclated to x has dimension 2, Summarizing our result we
have

r
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1) If mw ig such that there exists only one simple root a with
Wan -a%) = mw and o’ # -0 then we get one 2 cell whose center lies
in the unique closed oxbit G/P.

2) If oy 15 as in one but «® = -a then womw=|sm get one 2 nwww but its

' center lies in the orbit ¢ whose closure 0 fibers with P° fibers

onto G/P', P' being the parabolic generated by P and xln

3) If mh is such that there exists two distinct simple roots «,B such
that mw = Wﬁa - nau = an wau~ IRG = # and {o,B) = 0 then we get
exactly one 2 cell whose center lies in G/P.

4) If a, is such that a, = WAR - nnu = Wﬂm mnu and elther |9a # B ox

i i
-a? = B but (a,B) £ 0, then we get two 2 cells, whose both centers

lie in G/P.
This is our theorem,

DEFINITION. X will be called exceptional when rk Pic{X} > &.

7.7. REMARK. It is clear from the previcus analysis that the main dif-
ficulty in computing explicitely the dimensions of the cells lies in
the computation of dw. In the special case In which all fixed points
lie in the closed orbit this is accomplished by Lemma 7.4.

In particular for the case of a group G considered as a symmetric

variety over G x G we have the following computation for the Polncar?

: 3 = %.2):
polynomial: van » by = dim mwam.nu.

.AM%p?:AMnfpgtﬂiuai

)

with

(2 (w) the length of w, L{w)} the number of simple reflections Sy

hmmn w) < kiw)).

8. LINE BUNDLES ON X

8.1. Let X be as usual and let Y = G/P C X be the unique closed orbit
in M.

PROPOSITION. Let i*: Pie va = Pic¢ (¥} be the homomorphism induced by
the inclusion. Then i* is injective.

PROOF. First assume that for any simple root a € 9a we have & = ~a.

Then :m know that Pic Axu n. where & is the number of simple roots
in ou Furthermore, let si.....EP be the fundamental welghts correspond-

{*) We wish to thank G. Lusztlg for suggesting this formula.
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-]
ing to such a's. H:m: we have shown how to imbed X C N1 P(V ). S0 we

2w

i=1 1

get a map h*: vpnnw=_ MA< }) -+ pie Axu But it is e¢lear that i*h* is
injective since the H»mnnwnmhoa of the tautological bundle Ly on

HA<NEHH to G/P gives the line bundle associated to 2w,. Since
-3

rk{Pic( i P(V
i=1

Let us now suppose that there exists a simple xoot a such that

o? # -0, Then
it follows from the description of the dimension two cells glven in 7,

MEHU_ = rk{Pic (X)) our assertion follows.

Let S be the unique orbit closure associated to a - o°.

that each dimension 2 cell in M is already contained in 8, so we prove
that the map Plec nwg = Pic {S) induced by inclusion is injective,

Let us now orsm»&mn the map Pie (S8} = Pic (¥) and recall that for
a m:hnwuwo parabolic P, we get a fibration § — n\w whoge fiber is the
e which is n:m minimal compactification on b\r where L is the
and L7 the fix points
group of the involution induced by o on L. We thus get the giagram

<mn»mnw
adjoint auo:v of the semisimple Levi factor of Py

[
[l

PP

nE—y

¥Y=G/p “——

NS

and we can identify w\m with the unique closed orbit in x1. But notice
that Pic (G/P) u Pic Aﬂ\—v ) ®Pic qm.\m } and Pie (8) ¥ Pic nn\w u @ Filc Cﬁ
Also, by induction on the rank we can assume that the map

Pic Axrv = Pic AM\M ) induced by inclusion is injective. This clearly
implies that the map Pic (8) - Pic (Y) 15 also injective,

£)-

REMARK. Notice that since we can identify Pic (¥) with the lattice

spanned by the fundamental weights relative to the simple roots in e;.
our proposition implies that we can also identify Pic (X} with a sub-
lattice of such a lattice, call it T. Notice also that since for each

domi 2(x,a-a%) +
ominant special weight A with the property that- €EX for

.nuna.n nqu

every simple root a € e_ we have constructed a map N: X ¢.U~<»g we
clearly have that T contains the lattice spanned by such weights. In
particular, ﬂrpm lattice contains the double of the Hmnn»nm of special

welghts a -a” € T for each simple root a € o._ wm
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We wish to colleet some of the information gotten up to now for future

use.
We have the weights ug introduced in 1.7 and a natural embedding

L]

X~ :Un<thy

The mapping of the closed orbit Y — =Hva<:uw so lnduced is the canoni-
cal one obtained by the diagonal morphism. We compose this with the

natural projection G/B —* Y.
The ample generator of Pic (P(V
morphism to the element rzn

(notice that under this convention moaa\w.v:pu B <HH
If J is a subset of (1,...,8]) and 5; denotes the corresponding
P
= J
g% = 1nwv ) + NPV
i €3 M
through the cancnical fibration m& -+ n\wq and the canonlcal inclusion

m\wu nrv= %A<r V.e:mnmmoumHdUwunpncwmnn:ownsmwcsmwmnouuomvosm
i3 i
ing to pj restricted to 5y comes from the corresponding line bundle in

G/P

zwvu is mapped by the composed homo
of PiclG/B) corresponding to the weight My

as a G-module).

orbit closure, the composition S } factors

J Finally since m»nawv is discrete and G is simply connected any
L € Pic (¥) has a G linearization ((27]). Suppose now L & Pic (¥) is a
G linearized line bundle. If we restrict this to the closed orblt Y we
have the induced bundle already linearized, Now for a linearized line
bundle L, on Y the corresponding weight A is the character by which the
maximal torus acts on the fiber over the unigque B fix point, Kyt in Y.
Recall that the cell U xbp in w is a B~ stable affine subspace and
{(1,0) is the fixed point X, in Y previcdusly introduced, If s is a sec-—
tion trivializing h» on U xba so is b*s for any b € B”, Since the only
invertible functiong on U xBa are the constants we have b*s = a4, o a
scalar. Restricting to the point x_ we have o = b~ >,

8.2. Notice that since any L € Pic (X) can be G linearized we have that

G acts linearly on each mpﬁm.rv.

LEMMA. Let L € Pic (X) and consider H®({X,L) as a G module. Then
dim zoBma<.=onm.rw- %< 1 for each irreducible G-module V.

PROOF. Suppose :oaoac.zonm~buv # 0. Let u be the highest weight of V.

Let 84,5, € :onw.ru be two non zero U invariant sections whose weight
[ -

is y. Then MH is a B lnvariant rational function on X. Since B has a

dense orbit m: M. it follows the 51

5 15 constant, Hence, 2, is a multi-
Ple of s, and our claim follows.

Mow let V C X be the open set described in 2 and identify V with
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Uxat. Let ﬁx»u be the coordinate functions on A%. For any t €T,

tx, = nxnnhlnm.x» for the corresponding simple root a; € ou. 1<ixge.

MﬂomomHHHmz. Let 4: be the irreducible G-module whose highest welght is
M. Let A € T and r» € Pic Awg be the corresponding line bundle, then if

* O, _ ] +
Hom(V, ,H™(¥,L,)) # 0 LI I I t, €z

PROQF. Let s € :oaw,v>u be a section generating a B~ stable line. Then

if we restrict s to V and we let Sq be a section trivializing r>_< we

can write s = mOm where f is a regular function mn Voaux ba. mp:nnm

t
is U stable £ 1s also U stable and f = x__....~xpa

follows.

50 .0ur proposition

COROLLARY. There exists a unique up to a scalar G-invariant section
r, € :oax~r _.,0) whose divisor is §,.
i ='Tey oy i

PROOF. Let HH € moam.oam».g be the unique, up to constant, section
whose diviseor 1s 5(. Since 5 is G-stable and G is semisimple, ry is a
G-invariant section. Also since Xy = 0 1s a local equation of mp on Vv

we have nn_< = 8 X, where s, is a section trilvializing agmhv_<. The

weight of x is aw.uam so the G-invariance of y implies that S, has

welght tAnH :QMv. Hence QRMHV ~ L

-a¥
a; may

B.3. Now let 5 n ns

_Hd....-»nw = mwa are »n for any subset
H»d....~wnu C {1,...,%} be the corresponding G-stable subvariety. Let

¥y €T put Loyreoidp) = va_mpa.....pn. Let {J,,....,3; ) denote the
complement in {1,...,2} of _Ha....~ﬁn_.

PROPOSITION. Let y € I' be a dominant weight. Let Hw_.....ww_ =
Hu.—-..._‘uhlﬂw. ‘Then
mnﬁm o

) i>o0.
i

L =

e I A T (Ayeeenrdphl= 0 for
PROOF. We perform a double decreasing induction on ~Hﬂ~....»n~ and on
thyseou,ny). ;
If ~Ha~..._9n¥ = {1,...,4} then {1,...,%) = G/P is the unigue c¢losed
orbit and ocur proposition is part of Bott's theorem [4].

Now let HMA....~»nu be arbitrary and Huas....uhlﬂu nﬁ:d.....rmv.
Then notice that by our local description of m it follows easily that
if xﬁwd....~wn~ denotes the canonical bundle on S

(ia,...,1.31°
K{Ly,enoidy) = & 1oty

- 4,/...,1i,.) where p = .
IEWMMQ . ) 1 e ﬂmm-ﬂ-
m=1 ug .._.u_.—
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(Notice that uy € T (cE£.
Thus if we put L = L

-1, -1
that {K @ L Yy "= r«...:

postpone ﬂrm proof of n:pu mmmmnn»os to the end of this section. It fol

6.13).

<|Haaua|nm VA» ceerly) and K = K{i ,.e0rly) we have

Ap .....» ) can be verified to be very ample. We

lows from Kodaira vanishing theorem that
Hhs, 1 pXa1y =0 for 1 <aims, . -
qrertrig qrecrety
This implies by Serre's duality
i =
H Amﬁwa....-wﬂu.rv =0 for &t » 0,

Now by induction we have the result proved for any S5y and

for any Ava.....=m+gm [ mu_.....upnﬁu.
Corollary 8.2 implies that we have a non zero section

._.....Hﬂ+._-

€ H%(s

r
t+1 ﬁ»a.....p

u.r o

_ i, ...1.))
npn+d oy 1 t

t+1
and multiplication by Tiee yields an exact sequence.

i

v -+

0 =+L APA‘...ﬁw

-]
a [y
Y - (¢, -a, - l[a -a )
t by Ry i e

t

L dyrovesd) 2L

Y - M oy, - o )
TR 1= 1

ﬁpa....ﬁuﬂ+4v =+ 0

i=1

Then we get a long exact sequence that together with an inductive
hypothesls lmmediately proves the proposition.

-~

THEQREM. Let A € ' then:
1) u° ax r } x 0 if and o:ww ifX=vy + mnpﬁn» IQMV for some dominant

Tty m z* . Assuming a2 (x, L, Yy £0, Lf ¢< is the irreducible G-module
of :uarmun weight v, HZ(X, L, u =9 <ﬂ for all dominant y of the form
= - - +
.Yy = A pna» M»u~ ty €z
2} For A dominant H™ (X, vyv =0, 1> 0. -

PROOF.

1} The only if part is just Proposition 8.2,

To prove tha Lf part assume A is dominant. Then we know that
moam\w.rwﬂm\mv is the irreducible G-module V, whose highest weight is
A. Now consider the varieties

= G/P

X = 5,7801)2%(1,2) 75(1,2,30 7 - Sy,

Trr——— ko
3

We claim that for each & > 1 > 1 the restriction map

Q o

HS01,2,...,10-10' ] ) H(S

is onto.
This

sociated to the sequence

(1,2,....43 2

)
S,2,. 011} S(1,2,...,41

follows at once from the cohomology exact seguence as-—

0~rL gmady (Be2ee s =) 20, (12,0000 421) 22, (4,2,000,0) > 0

considered above and the vanishing of

A= (o

1

BB, 1) Ean (o, g8 1 e 2r e o s A1)

17y
proved in Proposition B.3.
In particular, the restriction map

H(X,L,) + 1°(6/2,L, /) 1is onto.

Hence, Hom Acﬁ,z Cn H. }) # 0 and we can find a non zexo lowest weight

vector v, m HO (X, L,) trowm welight is-A,
X
Now let A = y + Maﬂwﬁﬂ» |Qmu~ ty € u+. ¥ dominant in T.
i=

t t =
no=wwmoﬂn=mmmnnpo= nua.....an m =oam.r p

M nuanu |a.i

} and the section

aammafru
£y
Then the section <|#; -++L,” 18 cleaxly non zero U-invariant and its
weight is -y. So :os (v .:o.m.r»wu # 0, This proves 1); 2) is contained

in Proposition 8. m.

REMARK.
1) By a completely analogous argument we can prove that if X € I' then

% 0
H
om n<<~= Am—hg~....H *~E» s ) £ O
greenriy)
if and only if
-t
ﬂ -—

amg aaﬂu nu )
2} Clearly we can define a filtration of =oax r ) by putting for each
i-tuple of non negative hsnoumﬂm nnd.....n 1, tand.....npv to be the
subspace of sections s € u° Ax v»u vanishing on md of order > Epraeey
on 5, of order > na Then we can restate our theorem as follows:

A=y +

'

2




2

Wy legreenrty) 0 if A-Jt, (e -ola))

_ . \g iz not dominant
1 Wolkooit)) 3

R - % T € SO
1! £ 1* i /K<*
»lmﬂuanplonawuv
otherwise

(Here Ama-...~an z Aﬂﬂ....~ﬂhu means ma k4 wd....~m b4 wn..

8.4. In order to complete the proof of 8.3 we have to discuss the
ampleness of b<+r

We start with a general easy fact. Let w,w' denote two distinct
Eundamental weigths <a. Vo,V

w
highest welight w,w' , wtw'.

Aﬁu...pnv which has been used there.

whw! the irreducible representations of

We have a canonical G equivariant projection p: <e @ qs. - cs+e.
and we denote by p the induced projection P(V, ® V ,) SB(V__ .} of
projective spaces: Remark that Hu?.e_ x H.._csL is embedded in

nga ) <e_v via the Segre map.
LEMMA, The map p restricted to P(V,) x P(V_,} is a regular embedding.

PROOF. We consider the lrreducible representations of G as sections of
line bundles an G/B so that the map p corresponds to the usual multi-
plication. Since G/BP is irreducible the product of 2 non zerc sections
is always non zero. Now if s,s' € ce - A <s. and st = g8't' we
¢laim that 5' = ¢g, t' = oaaﬂ , ¢ a scalar. In fact since w,w' are
fundamental the divisors of s,s',t,t' are all irreducible since w,u'
are independent in Plc (G/B) the divisor of s cannot equal the divisor
of t' and so we have divs = divs' and the c¢laim.

This proves that p is injective when.restricted to va<evx Mn<s.w.
To see that the map 1s also smooth one can use the same fact In local
affine coordinates.

We are now ready to prove:

PROFOSITION. For any ¥ € I dominant the line bundle L
X hence also on S for any choice of 1,,...,1
= APA.....»nV 1

o is ample on
£
PROOF. We distinguish 2 cases, If y is special, since y is a regular
special weight so is p+y hence by 3.1 and 4.1 we have that L is
very ample on X.

Assume y not special. This can happen only if we are in the
exeptional casei.e. Lf the rkPic{X} > % since 1f a multiple of a weight

¥ 18 special so is ¥ and Pic(X)contalns the double of the lattice of

2 (u+y)

special weights.

Gk o

-

B b A

] 33

First of all we can clearly reduce to the case is which X is
simple f{cf. 5.3).

in the group case X = G % G/G wa have rk Ple(f)= rkG = ¢ by
remark 7.7 otherwise X = MMM with G simple,

We know by 7.6 that rk Mﬁn@@v 2 1f and only if there exists a simple
root o such that:
o? = -a' - B with a' =« and either g # 0 or Aﬂq.a.v #F0.

Now we can inspect the tables of Satake diagrams 1n the clas-
1101, p. 532=-534) and we see using
the notations of such tables that the only cases to be considered are
the ones denoted by AIXII (first dlagram) A IV, D III {second diagram),
EIIXI. One remarks by inspecting the table ¥V {p. 518) that these cases
belong to table IIT (p. 515).

In all cases one can verlfy that there is a unigue palr of simple

sification of symmetric spaces (cf.

roots a,a' with the above properties and hence rk upq@@u L1,
Case AIII and AIV can be explicitely described as follows.
We considex in mwu the auvtomorphism o defined as conjugation
by the block matrix

with k # n-k.

Case DIII can be described as
S0 {4n+2) relative to the symmetric form
2n+1

I 0

2n+1

and conjugation relative to

Ioper 0

0 “I2n41

For EXTII consider the Dynkin diagram of Eg indexed as




*
relative to a Cartan subalgebra t.
Denote by Xy the generator of the corresponding root subspace and
define o as the identity on t,

One can now verify in each case that the fixed group H is the intersec
tion of a suitable maximal parabolic subgroup Q of type o with its op-
posite Q' which in all cases is of type a'.

Let us dencte by w and w' the dual fundamental weights to a, «

*
and V¥ , ¥

w w"
that <E NV and by 1.3 that w? = ~w', S0 that w + w' 15 a speclal
weight. If v € Vo, (resp. v' € <s.vum=mﬂmnm the line fixed by Q {(resp.

by Q') we have that v, v' are seminvariants under H and v 8 v' is an

the corresponding irreducible representations, We remark

H invariant, thus if we project va v' on Vv , we obtain a non zeroc H

wtw
invariant, By the analysis of section 4 we have a regular morphism m

of M onto the orbit closure ¥ of the class of v & v' H=“MH<E+E.U.

We show now that Y is isomorphic to G/Q x G/Q'. This follows from
Lemma 8.4 in the following way. H:Hu?.s -] <EL the Gx G orbit of v & v'
is clearly G/Q x G/Q' and this orbit projects isomorphically to its

image in T (V

E+€.u under p. On the other hand an easy computation of

" dimensions shows that the G orblit of v @ v' is open in G/Q * G/Q' hence

its closure 1s G/Q * G/Q'. Since p is G-equivariant everything is
proved. Comparing the map w + Y N G/ x G/Q' with the two projections
and the respective Pllcker embeddings we-have two regular projective
morphisms associated to the non special weights w, w'. We go back now
to vy and claim that a suiltable positive multiple of y is of the form
g +aw or ¢ + aw' with a » 0 and ¢ a dominant special weight.

This can be shown remarking that the subgroup ['' of T generated by
the special weights and w has the same rank as T thus a positive multi-
ple of vy lie in I''. Now 1f a dominant weight is in I'', using the nota-
tions of 1.3 it is of the form

my = Mshsh + aw with n, = Swﬁhw.

and w (resp. w') 1s one of the sw.m~ for istance w = wy (xesp. w' = auu.
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Also my being dominant n, + a > 0 and n, > 0 for i # 1. If a > 0 we are

1 i

done otherwise

my = (n, +a) (w+uw') + M n,u, -aw'.
1 i52 171

From this it is clear that for any dominant y € I the complete linear
system agsociated to a suitable positive multiple of vy 1s without base
points, since p 4s very ample this implies that y + ¥ is ample.

9. COMPUTATION OF THE CHARACTERISTIC NUMBERS

9.1. In section 7 we have computed Pic Aww ~ =Maw.a_. We want now to
give an explicit algorithm to compute the characteristic numbers.
This means that, given n elements LSNTRRYE € :uam~ﬂu~ n = dim M. we
wish to evaluate the product HyeooX, S :uunw.u- against the class of a
point.

Given =|Hmmcnmm hypersurfaces Dyre=esD in G/H such that their
closures in X, UH do not contain the unique ¢losed orbit, if
X, = camnu € ric (}) » mu.w-u_ the corresponding characteristic number
counts exactly the number of points common to generic translates mwop.
9y € G, of the U».m {this ls an easy consequence of [12] since m has a
finite number of orbits},

We may work in xmaw.cv and use suitable bases for this space. We

may also assume that X is simple (cf. 5.3}.

It follows from the analysis performed in section B that Pic AMC ap
can be ldentified with the vector space generated by the special weights
if m is not exceptional, otherwise one has to add to the special weights
a fundamental weight w,

Let us denote with I the vector space spanned by the special
weights and, in the exceptional case Hb =L + Duw.

We alse know that the divisors 5y correspond to twlce the restrig
ted simple roots and form a basis of I. Denote by Hmhu these elements
in I. We have another basis of I given by the elements yu [cf. 4.1).

We notice that .»u~—mwu_ =0 if i # 3 (for the Killing form).

LEMMA. If HA....-HW. ua..w..uplx is a shuffle of the indices 1,2,...,%,
the elements »»A.......»»w._mudu......,_muvlru form a basls of E.

PROOF. Clear by the orthogonality relations.
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9.2. Given an oriented compact manifold X and an oriented submanifold
Y denote by (Y] the Poincar2 dual of the fundamental class of Y. We

‘shall use the following basic facts:

1) 1If HA. Nu are oriented submanifolds of X with transversal intersec-

. tion we have:
mxﬂ n muu = Hmau v Hmm_

d
2) If Y C X is a d-dimenslonal oriented submanifold and ¢ € H (X) we
have that the evaluation of ¢ V [Y] on the class of a point in X
equals the evaluation of c|, on the class of a point in Y.

The main proposition is the next one.

PROPOSITION. Let S{g, .y} = Sgy M ... NSy . If Sy g,) 1is not the

closed orbit in X then: 4
hy hy hy
1) Every monomial »Pd »ww.....»ux with mrw = dim mﬁpﬁ
S(4q.. .4k}
2) In the exceptional case every monomial w

qu<m=hm:mm on

h
hy rA 2 :x

AqeRigee.e )yt with

k
Ihy = dim Sgy,...4) vanishes on §i,...4)).

PROOF. 1) Recall that we have a projection =: m—w?..wwul.Q\MAHA:.kumzn
the classes »»_.....yp come via uw* from the cohomology of Q\MHM?..»r?
Since mﬁpéi.wx_pm not mro closed orblt we have dim mAHAZ.MXWv

dim n\mawa.:wxwmsm everything follows, _

2) We have seen in 8.4 that PE induces a morphism p: X = G/Q for a
suitable maximal parabolic Q and w 1s the pullback of the ample genera
tor of Pic {G/Q) by p*. We wish to consider the induced map
m X pz mh:...“_.r.vr. m\m.ﬁ‘_...“:awx G/Q and denocte by WC.._..L:t its image.
We know that w+w” is one of the fundamental special weights »p. If
the index 1 is one of the indeces of the set {i,,...,i,} then the para
bolic Q contains mﬁnd...Hrwmsm the projection p: mahd:.wxw -+ G/Q factors
through Q\MAHA:.HWH.aer case therefore follows as in 1).

Otherwise n\wﬁ»d:wuxux G/Q contalns a unique closed orbit under G
isomorphic to G/P(y. " i )N Q. We claim that wf...pﬁma:ﬁm this orbit.
In fact first of all the fiber of the projection n\w:;.:pxuw.o -
O\w# pr equals the variety bﬁhf..rL\IHA.:wa N Q which is a complete

roaommamocm space over the semisimple part of rhwal.hx?

e

e e

b

a7

If we restrict to a fiber NAH?..prOm % the line bundle L, we obtaln a
line bundle of the same type (relative to the minimal compactification
XA.._.._...HF“OH H.AHA...P—L\”HF._...#TH (ef. 5.2)).
Since we know that t.nﬁwa.iwwfrs_xﬁpf..:% is an ilrreducible

module we get that the restriction homomorphism
Hf...:u g P

o o O
HOX, L) ~H .x:._.:»w_.re_xf:.{..

ls onto. Hence the induced morphism on Xi....1,) coincides with the
restriction to xﬁhd:.»x of p and maps it wano Aﬁ?..mm\rmpai.wxuj Q.

This proves the claim. Since 5; i, is not the closed orbit

1o
dim ﬂu;t.»wa dim M»d:.wxumsa everything follows as in 1.

9.3. We are now ready to lllustrate the algorithm. We treat the excep-
tional case, the non exceptional is the same without the appearence of
w. b

x_e oyua...yum
with ag.....uw distinct (in particular the ones with X = 0 are the mong
mials we wish to evaluate). We call k the index of M. We count the num
ber of indices ur appearing in M and different from pa~h~....~nx and
call this the content of M.

Consider monomials of degree n of type zlmru e —m»

If uA # »;.PN.....H# we have an explicit formula expressing »ua in
terms of »pa.yu \....»Hx and the Hmu_.m relative to the remaining
indeces (Lemma m.Av.

Substituting we obtain M expressed as a linear combination of
monomials of higher index and of lower content.

Iterating we obtain M as a combination ¢f monomlals of index & or
of content 0.

By Proposition 9.2 all monomials of contenent 0 vanish, the computation

of the remaining ones can be performed:
h
LEMMA, The evaluation of —ma_ﬁmuu...ﬁmawe o»uu - »Hw on the class of

a point in X equals the evaluation of w o»w
closed orbit on the class of a point in it.

...»w# restricted to the
1

PROOF. Clear since the closed orbit is the transversal intersection of

the hypersurfaces 5y
We summarize

THEOREM. By an explicit algorithm the computation of the characteristic

numbers 1s reduced to the one relative to the closed crhit (for which

it ig known since the cohomology ring of & complete hom@deneous space

is known [3]).



10, AN EXAMPLE

.ao.a. In his fundamental woxk [14] H. Schubert has computed the number
of space guadrics tangent to 9 guadrics in general position to be
666.841.088 We want here to perform agaln this computation.

The variety of non degenerate guadrics in p" is symmetric, it is
X, = SL{n+1)/S0(n+1) (the involution being o (A) = A7),

The variety X is classically called the variety of complete
quadries ([11,(15]),1{17),1191,(21),1(22])).

" One can easily verify (by the invariant thecory of the orthogonal

group) that the irreducible representations of SL(n+1) containing an
invariant for S0(n+1} are exactly the ones of highest weight

n
1 ﬂ»me» ae» the fundamental welghts). From this it follows that we can
1=1

identify Pic (¥) with 24 where A is the lattice of weights for SL(n+1)

and that the closed orbit in X is the full flag variety F. The usual

maximal Torus of diagonal matrices is anisotropic and so the restricted
simple roots coincide with the usual simple roots. Hence:

.HmA_ = N.uedv - 2w,

2{2uw - 2w 1 <4 <n

1s,)

s,)

$) T 25y

NAME:H - 2w

i+

Let us fix for each 1 = 0,...,n-1 a linear subspace Ty of dimension 1
in ", penote by o,
We also fix a non degenerate guadric Q and denocte by D the hypersurface

the hypersurfaces in X, of quadric tangent to m,.

in xo of quadrics tangent to Q. We denote as usual by m.._.~ D their
closures in X.
PROPOSITION. -
1) [D,] = 0(D,) = L
2 et
2) [b) =2 ] (b,]
i=0

3) m» and D do not contain the closed oxbit.

2wy

PROOF., 1} xo is the affine variety of symmetric (n{1) % (n+1) matrices
%

24
induced by the map assoclating to each matrix the matrix of determi-

of determinant 1. The map from xo to P (V } is easily seen to be

nants of i xi minors, which gives a guadric in ﬁn<fp
of 1-1 dimensional subspaces 1s

) whose intersec-

tion with the Grassmann variety S 1.n
I

exactly the set of tangent subspaces to the original guadric.

Given an i-1 dimensional subspace v, , 1n P" we consider it as a

point in G hence, by taking the embedding of nhld in P (V

f1:] NEHv as

i-1,n’
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a point in UA<~E»~. Then it 1s5 clear that the intersection of xo with
the hyperplane in HA<me } associated to this point is at least set

theoretically D; ,. So & have found an s € =onw.huap
has support equal to-D,_4. But it is clear from our computation of

) whose divisor

Pie (X} that the divisor of s is reduced so it equals m.._...d proving 1}.
2) Consider the variety mo.=ia of flags p € 7 CP" where p is a

peint and 7 is an hyperplane., Define a flag {p,n) to be tangent to a

quadric ¢ € Mo if p € 0 and 7 is the hyperplane tangent to Q in p. Let

Y CEx mo.=|a be the closure of the correspondence ¥a (. (p, 5} | (p,m}

is tangent to Q, @ € mo_. Clearly dim ¥ = dim ¥+n-1 = Antl) (n+2) m3+~v+a|u
and we get two projections

a
o]

mc.slé

)

A simple dimension count shows that we have an homomorphism

*

9.t B (Fy o2 = W (F)

Consider our complete flag LA P LA cr”,
It is well known that a basis of M {F, ~_4+%) is given by the classes
t

dual to the following Schubert subvarieties:
¥y = Up,m)|p € wy C o).

On the other hand it follows easily from our definition of ¥ that
u.m+ghmmuw = [D,;] so that g,£" is an isomorphism.

Furthermore 1f we fix a quadric Q € mo and we embed it in Fg
by wmmonuwnmnm to each point in Q its tangent flag we get that
g .f ([Qi) = {D] so that in order to prove our claim it is sufficlent to
show that .

=1

n=1
ol = }
1=0

2
NHH»H in HY(F

0,n-1%)

Dencte by xm.....wmli the Schubert cycles dual to No.....m=1_u i.e.

¥) = f(p,mi|p € Tpeg? T 2 ==|p|49. We are reduced to show that the
evaluation on the class of a point in mo.s of —ou.H&»u is 2 for each

0 < L < n-1. This is clear by elementary oo:upmmhmﬂ»o=L10= the geometry
of quadrics.
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uuzmmwumanOSnrwanUﬂhOHﬁﬂO?OM»MSid.bmmcsmnzononl
trary and let s € :caw~husuv be a section whose divisor is Dy. The re-
striction of s to F is zerc. On the other hand it follows from our re-

sults of section £ that the restriction homomorphism

*

i =o~m.rm£v - =o?.$£_3
1% an isomorphism.
We now show our result for D. For this, given a non singular
‘guadric g € Xor define a flag £ € F to be tangent to Q Lf the point of
f lies in Q and the hyperplane of f is the hyperplane tangent to ¢ in
this point. Consider the variety 2 C w x F which is the closure of the

correspondence Z - (., 8)|a < Xy £ is tangent to Q). Consider the
fibration p:Xx F=X x mosslh »:mmmmm by the natural nhUHmnwo: 1

q: m&wc.:lu. Then we claim 2 = p (Y). This is clear since M = m Awg.
This allows us to determine the fiber of the projection g: 2 + X over a
point mo in the c¢closed orbit.

In fact think of mo as a flag mo = ﬁao C m c...cC LA CP"} and
monmmormm mxdamov vcnaﬁmvuAu.ab.zmnwmhan:mn mliamov ucN

where Z; = {flp € "y < u},

*
To see this notice that the image of mo in Ha<newu under the mor-
*

phism X Laﬁn<ush. represents a mmwmamnmnm quadrie in Hn<spu whose inter
mmnn»ossuwrﬂrmmuwmmsmszwm=0m»namnamsm»oamw chmwmnmmpmusmnﬂ:m

set of such subspaces intersecting =

i

Thus if £ € ml4amou its (i-1) mwahﬂmpoamw subspace has to meet
"h-i+ In particular p € m ..

Assume p € Ty = Ty_q- We claim 7 D ¥y+ In fact if 1 > 1 each (n-141)
dimensional subspace t with p € T € 7 has to meet LI by the above re
marks, and Lf 1 = 0 there is nothing to prove. So £ € 2, - Having shown
this it is easily seen that given no in the closed orbit of m such that

LI is not tangent to Q for all ¢ <1 < n-1, mo ED proving 3).

COROLLARY. The evaluation at the class of a point of any monomial of
the form

-

54 33 n r=+a
ANEAU .....Aue:g ANPWANEMV
n+1
with M“ hy = hhHmmWMHmh.-a = dim ¥ gives the number of quadrics which
i=

are simultaneously tangent to ra points, rm lines,....., :: hyperplanes,
3:+a quadries lying in general position.

REMARK. Our proof of the fact that D ? F works also in the case in

41

which D is the closure in X of the hypersurface of xo of quadrics tan-

gent to any fixed subvariety in ®", Thus since [D] can be written as a
lipnear combination of the nmhu.m the problem of enumerating the number

~=+amuﬁ+wv -1 subvarieties in

of quadrics simultaneocusly tangent to

general position is reduced to the same problem for linear spaces. This
fact has been recently shown in a much greater generality by Fulton,
Kleiman, Mac Pherson.

In the case of P” working out the computations with the algorithm
given in 9.2 one finds the following table which can also be found in
Schubert's book (p. 105):

3

xm = xw =1 xﬂxwxu = xwxwxg = 12

xmxm = xwxm =2 xNxWXu = xwxwa = 24

x“xw = xwxw = 4 xuxmxu = xwxw*; = 48

xmxw = xwxw = 8 xmxuxw = swxuxw = 18

xwxm = xwxm = 16 umxwxw u xwxwa = 36

x“xw = xwxw = 32 x“xwxw = xwxwxm =72

xwxw = xwxw = 56 xmxuxw - xwxnxw = 34

xwxw = xwxw = 80 x“xwxw = xmxwxw = 6§

xaxw = xuxm = 92 x“xwxw = 42

MW = 92 xwxwxu = xwxmxa = 104
xwxu = kuxm = 3 xwxwxu = xwxwxd = B0

x“xw = xwxﬂ =9 xwx“xw = xwx“x“ = 112
xmxw = xwxm = 17 xaxwxu = 104

x“xw = xwx“ = 21 xwxwxw = 128

x{x%y = xix,x, = 6 xqxpxy = 104
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and so

(1]

2]

3]

[41

5]

6]

71

8)

9]

01

1]

]

9 _
auax_ +ox, 4+ :uuv = 666.841.088
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GEOMETRIC INVARIANT THEORY AND APPLICATIONS TO MODULY PROBLEMS

D. Gieseker
University of California
- Los Angeles, California 90024 USA

These notes are a brief introduction to geometrie invariant theory (GIT) a
contain two applications of that theory to the construction of moduli spaces in
gebraic geometry. The firat two sectlons sketch the basics of GIT over the comy
mimbers. In §3 we connect GIT and the theory of stable bundles of rank two on ¢
non-singular curve, We then consider in {4 the relation between smooth curves «
GIT. C(ur main result here 1s that there ere enough projective invariants of' ap:
curvea to nmu.wuw&m any two projectively distinct smooth curves of genua g and
degree 4 provided 4 > 2¢ om that the curves are non-degenerate. This resul
can be used to construct a moduli space aw for smooth curves of genug g. In
gectiong §5 and §, we lock at the comnection between stable curves in the sence
of Mimford and Delign: and stable curves In the senses of GIT. The mein resul
esgentially that the compactification ~._.._M of ?n congldered by Mamford and De
ie a projective variety. (This result was originally obtained by F. Kmiteen in
characteristic zero using other methods.) Finally in §7 we indicate how GIT can
used to construct compactified generalized Jacoblans of stable curves. Here we c
oider the example of an irredueible curve with one node. The nature of the com-
pactification of the generalized Jacobian of a general stable curve obtained by
GIT has yet to be worked cut. One can slso extend the results of §5,6,7 to vect:
bundles of rank two Hn-z.m_._. Roughly, one geta a construction of a projectiw
modull space of stable bundles on an irreducible curve which has one node. This
can then be uged to study the topology of the moduli space of atable bundles on :
amooth curve by degeneration methods.

The original soures for the first two secticns is ?_H I, vut [N] aleo pre
vides & more leisurely treatment. A connection between GIT and the theory of
atable bundles on a smooth curve wie worked out by Maomford and Seshedri., [N] conte
an account of this work. In thesge notes, we make g 8lightly different connection
which is wore suitable for higher dimensional, varieties Hm.._.uzl. Munford gave a
proof of the existence of __..n using GIT in —:H__ using the Chow variety of a
Space curves. Here we use Grothendieck'a Hilbert scheme which is arguably eaei:
mamu contains an extensidn of these ideas to the n canonical images of surface:
of general type. The connection between GIT and stable curves was worked out
Jointly by Mumford and myselrl uging the Chow variety and Hilbert scheme :sm.m
Finally an exhaustive diecussion of the developments in GIT since the Tirst

edition of Mimford's book and the present can be found in the second edition of
¥anford's book. ‘.
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